Correlation and Class Based Block Formation for Improved Structured Dictionary Learning
نویسندگان
چکیده
In recent years, the creation of block-structured dictionary has attracted a lot of interest. Learning such dictionaries involve two step process: block formation and dictionary update. Both these steps are important in producing an effective dictionary. The existing works mostly assume that the block structure is known a priori while learning the dictionary. For finding the unknown block structure given a dictionary commonly sparse agglomerative clustering (SAC) is used. It groups atoms based on their consistency in sparse coding with respect to the unstructured dictionary. This paper explores two innovations towards improving the reconstruction as well as the classification ability achieved with block-structured dictionary. First, we propose a novel block structuring approach that makes use of the correlation among dictionary atoms. Unlike the SAC approach, which groups diverse atoms, in the proposed approach the blocks are formed by grouping the top most correlated atoms in the dictionary. The proposed block clustering approach is noted to yield significant reductions in redundancy as well as provides a direct control on the block size when compared with the existing SAC-based block structuring. Later, motivated by works using supervised a priori known block structure, we also explore the incorporation of class information in the proposed block formation approach to further enhance the classification ability of the block dictionary. For assessment of the reconstruction ability with proposed innovations is done on synthetic data while the classification ability has been evaluated in large variability speaker verification task.
منابع مشابه
A Novel Face Detection Method Based on Over-complete Incoherent Dictionary Learning
In this paper, face detection problem is considered using the concepts of compressive sensing technique. This technique includes dictionary learning procedure and sparse coding method to represent the structural content of input images. In the proposed method, dictionaries are learned in such a way that the trained models have the least degree of coherence to each other. The novelty of the prop...
متن کاملSparse Structured Principal Component Analysis and Model Learning for Classification and Quality Detection of Rice Grains
In scientific and commercial fields associated with modern agriculture, the categorization of different rice types and determination of its quality is very important. Various image processing algorithms are applied in recent years to detect different agricultural products. The problem of rice classification and quality detection in this paper is presented based on model learning concepts includ...
متن کاملA New Method for Speech Enhancement Based on Incoherent Model Learning in Wavelet Transform Domain
Quality of speech signal significantly reduces in the presence of environmental noise signals and leads to the imperfect performance of hearing aid devices, automatic speech recognition systems, and mobile phones. In this paper, the single channel speech enhancement of the corrupted signals by the additive noise signals is considered. A dictionary-based algorithm is proposed to train the speech...
متن کاملA Novel Image Denoising Method Based on Incoherent Dictionary Learning and Domain Adaptation Technique
In this paper, a new method for image denoising based on incoherent dictionary learning and domain transfer technique is proposed. The idea of using sparse representation concept is one of the most interesting areas for researchers. The goal of sparse coding is to approximately model the input data as a weighted linear combination of a small number of basis vectors. Two characteristics should b...
متن کاملSpeech Enhancement using Adaptive Data-Based Dictionary Learning
In this paper, a speech enhancement method based on sparse representation of data frames has been presented. Speech enhancement is one of the most applicable areas in different signal processing fields. The objective of a speech enhancement system is improvement of either intelligibility or quality of the speech signals. This process is carried out using the speech signal processing techniques ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1708.01448 شماره
صفحات -
تاریخ انتشار 2017